
gasp

gasp ii

COLLABORATORS

TITLE :

gasp

ACTION NAME DATE SIGNATURE

WRITTEN BY April 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

gasp iii

Contents

1 gasp 1

1.1 gasp.guide . 1

1.2 gasp.guide/Overview . 1

1.3 gasp.guide/Invoking GASP . 2

1.4 gasp.guide/Commands . 4

1.5 gasp.guide/Conditionals . 5

1.6 gasp.guide/Loops . 6

1.7 gasp.guide/Variables . 7

1.8 gasp.guide/Macros . 8

1.9 gasp.guide/Data . 10

1.10 gasp.guide/Initialized . 10

1.11 gasp.guide/Uninitialized . 11

1.12 gasp.guide/Listings . 12

1.13 gasp.guide/Other Commands . 13

1.14 gasp.guide/Syntax Details . 14

1.15 gasp.guide/Markers . 15

1.16 gasp.guide/Constants . 16

1.17 gasp.guide/Symbols . 16

1.18 gasp.guide/Expressions . 16

1.19 gasp.guide/String Builtins . 17

1.20 gasp.guide/Alternate . 18

1.21 gasp.guide/Index . 18

gasp 1 / 25

Chapter 1

gasp

1.1 gasp.guide

GASP

GASP is a preprocessor for assembly programs.

This file describes version 1 of GASP.

Steve Chamberlain wrote GASP; Roland Pesch wrote this manual.

Overview
What is GASP?

Invoking GASP
Command line options.

Commands
Preprocessor commands.

Index
Index.

1.2 gasp.guide/Overview

What is GASP?

The primary purpose of the GNU assembler is to assemble the output of
other programs--notably compilers. When you have to hand-code
specialized routines in assembly, that means the GNU assembler is an
unfriendly processor: it has no directives for macros, conditionals, or
many other conveniences that you might expect.

gasp 2 / 25

In some cases you can simply use the C preprocessor, or a generalized
preprocessor like M4; but this can be awkward, since none of these
things are designed with assembly in mind.

GASP fills this need. It is expressly designed to provide the
facilities you need with hand-coded assembly code. Implementing it as a
preprocessor, rather than part of the assembler, allows the maximum
flexibility: you can use it with hand-coded assembly, without paying a
penalty of added complexity in the assembler you use for compiler
output.

Here is a small example to give the flavor of GASP. This input to
GASP

.MACRO saveregs from=8 to=14
count .ASSIGNA \from

! save r\from..r\to
.AWHILE \&count LE \to
mov r\&count,@-sp

count .ASSIGNA \&count + 1
.AENDW
.ENDM

saveregs from=12

bar: mov #H’dead+10,r0
foo .SDATAC "hello"<10>

.END

generates this assembly program:

! save r12..r14
mov r12,@-sp
mov r13,@-sp
mov r14,@-sp

bar: mov #57005+10,r0
foo: .byte 6,104,101,108,108,111,10

1.3 gasp.guide/Invoking GASP

Command Line Options

The simplest way to use GASP is to run it as a filter and assemble
its output. In Unix and its ilk, you can do this, for example:

$ gasp prog.asm | as -o prog.o

Naturally, there are also a few command-line options to allow you to
request variations on this basic theme. Here is the full set of
possibilities for the GASP command line.

gasp 3 / 25

gasp [-a | --alternate]
[-c CHAR | --commentchar CHAR]
[-d | --debug] [-h | --help]
[-o OUTFILE | --output OUTFILE]
[-p | --print] [-s | --copysource]
[-u | --unreasonable] [-v | --version]
INFILE ...

‘INFILE ...’
The input file names. You must specify at least one input file;
if you specify more, GASP preprocesses them all, concatenating the
output in the order you list the INFILE arguments.

Mark the end of each input file with the preprocessor command
‘.END’. See

Miscellaneous commands
.

‘-a’
‘--alternate’

Use alternative macro syntax. See
Alternate macro syntax
, for a

discussion of how this syntax differs from the default GASP syntax.

‘-c ’CHAR’’
‘--commentchar ’CHAR’’

Use CHAR as the comment character. The default comment character
is ‘!’. For example, to use a semicolon as the comment character,
specify ‘-c ’;’’ on the GASP command line. Since assembler
command characters often have special significance to command
shells, it is a good idea to quote or escape CHAR when you specify
a comment character.

For the sake of simplicity, all examples in this manual use the
default comment character ‘!’.

‘-d’
‘--debug’

Show debugging statistics. In this version of GASP, this option
produces statistics about the string buffers that GASP allocates
internally. For each defined buffersize S, GASP shows the number
of strings N that it allocated, with a line like this:

strings size S : N

GASP displays these statistics on the standard error stream, when
done preprocessing.

‘-h’
‘--help’

Display a summary of the GASP command line options.

‘-o OUTFILE’
‘--output OUTFILE’

Write the output in a file called OUTFILE. If you do not use the
‘-o’ option, GASP writes its output on the standard output stream.

gasp 4 / 25

‘-p’
‘--print’

Print line numbers. GASP obeys this option *only* if you also
specify ‘-s’ to copy source lines to its output. With ‘-s -p’,
GASP displays the line number of each source line copied
(immediately after the comment character at the beginning of the
line).

‘-s’
‘--copysource’

Copy the source lines to the output file. Use this option to see
the effect of each preprocessor line on the GASP output. GASP
places a comment character (‘!’ by default) at the beginning of
each source line it copies, so that you can use this option and
still assemble the result.

‘-u’
‘--unreasonable’

Bypass "unreasonable expansion" limit. Since you can define GASP
macros inside other macro definitions, the preprocessor normally
includes a sanity check. If your program requires more than 1,000
nested expansions, GASP normally exits with an error message. Use
this option to turn off this check, allowing unlimited nested
expansions.

‘-v’
‘--version’

Display the GASP version number.

1.4 gasp.guide/Commands

Preprocessor Commands

GASP commands have a straightforward syntax that fits in well with
assembly conventions. In general, a command extends for a line, and may
have up to three fields: an optional label, the command itself, and
optional arguments to the command. You can write commands in upper or
lower case, though this manual shows them in upper case. See

Details of the GASP syntax
, for more information.

Conditionals

Loops

Variables

Macros

gasp 5 / 25

Data

Listings

Other Commands

Syntax Details

Alternate

1.5 gasp.guide/Conditionals

Conditional assembly
====================

The conditional-assembly directives allow you to include or exclude
portions of an assembly depending on how a pair of expressions, or a
pair of strings, compare.

The overall structure of conditionals is familiar from many other
contexts. ‘.AIF’ marks the start of a conditional, and precedes
assembly for the case when the condition is true. An optional
‘.AELSE’ precedes assembly for the converse case, and an ‘.AENDI’ marks
the end of the condition.

You may nest conditionals up to a depth of 100; GASP rejects nesting
beyond that, because it may indicate a bug in your macro structure.

Conditionals are primarily useful inside macro definitions, where you
often need different effects depending on argument values. See

Defining your own directives
, for details about defining macros.

‘.AIF EXPRA CMP EXPRB’
‘.AIF "STRA" CMP "STRB"’

The governing condition goes on the same line as the ‘.AIF’
preprocessor command. You may compare either two strings, or two
expressions.

When you compare strings, only two conditional CMP comparison
operators are available: ‘EQ’ (true if STRA and STRB are
identical), and ‘NE’ (the converse).

When you compare two expressions, *both expressions must be
absolute* (see

Arithmetic expressions in GASP
). You can use these

CMP comparison operators with expressions:

‘EQ’
Are EXPRA and EXPRB equal? (For strings, are STRA and STRB
identical?)

gasp 6 / 25

‘NE’
Are EXPRA and EXPRB different? (For strings, are STRA and
STRB different?

‘LT’
Is EXPRA less than EXPRB? (Not allowed for strings.)

‘LE’
Is EXPRA less than or equal to EXPRB? (Not allowed for
strings.)

‘GT’
Is EXPRA greater than EXPRB? (Not allowed for strings.)

‘GE’
Is EXPRA greater than or equal to EXPRB? (Not allowed for
strings.)

‘.AELSE’
Marks the start of assembly code to be included if the condition
fails. Optional, and only allowed within a conditional (between
‘.AIF’ and ‘.AENDI’).

‘.AENDI’
Marks the end of a conditional assembly.

1.6 gasp.guide/Loops

Repetitive sections of assembly
===============================

Two preprocessor directives allow you to repeatedly issue copies of
the same block of assembly code.

‘.AREPEAT AEXP’
‘.AENDR’

If you simply need to repeat the same block of assembly over and
over a fixed number of times, sandwich one instance of the
repeated block between ‘.AREPEAT’ and ‘.AENDR’. Specify the
number of copies as AEXP (which must be an absolute expression).
For example, this repeats two assembly statements three times in
succession:

.AREPEAT 3
rotcl r2
div1 r0,r1
.AENDR

‘.AWHILE EXPRA CMP EXPRB’
‘.AENDW’
‘.AWHILE STRA CMP STRB’
‘.AENDW’

gasp 7 / 25

To repeat a block of assembly depending on a conditional test,
rather than repeating it for a specific number of times, use
‘.AWHILE’. ‘.AENDW’ marks the end of the repeated block. The
conditional comparison works exactly the same way as for ‘.AIF’,
with the same comparison operators (see

Conditional assembly
).

Since the terms of the comparison must be absolute expression,
‘.AWHILE’ is primarily useful within macros. See

Defining your own directives
.

You can use the ‘.EXITM’ preprocessor directive to break out of
loops early (as well as to break out of macros). See

Defining your own directives
.

1.7 gasp.guide/Variables

Preprocessor variables
======================

You can use variables in GASP to represent strings, registers, or
the results of expressions.

You must distinguish two kinds of variables:
1. Variables defined with ‘.EQU’ or ‘.ASSIGN’. To evaluate this kind

of variable in your assembly output, simply mention its name. For
example, these two lines define and use a variable ‘eg’:

eg .EQU FLIP-64
...
mov.l eg,r0

Do not use this kind of variable in conditional expressions or
while loops; GASP only evaluates these variables when writing
assembly output.

2. Variables for use during preprocessing. You can define these with
‘.ASSIGNC’ or ‘.ASSIGNA’. To evaluate this kind of variable,
write ‘\&’ before the variable name; for example,

opcit .ASSIGNA 47
...
.AWHILE \&opcit GT 0
...
.AENDW

GASP treats macro arguments almost the same way, but to evaluate
them you use the prefix ‘\’ rather than ‘\&’. See

gasp 8 / 25

Defining your own directives
.

‘PVAR .EQU EXPR’
Assign preprocessor variable PVAR the value of the expression
EXPR. There are no restrictions on redefinition; use ‘.EQU’ with
the same PVAR as often as you find it convenient.

‘PVAR .ASSIGN EXPR’
Almost the same as ‘.EQU’, save that you may not redefine PVAR
using ‘.ASSIGN’ once it has a value.

‘PVAR .ASSIGNA AEXPR’
Define a variable with a numeric value, for use during
preprocessing. AEXPR must be an absolute expression. You can
redefine variables with ‘.ASSIGNA’ at any time.

‘PVAR .ASSIGNC "STR"’
Define a variable with a string value, for use during
preprocessing. You can redefine variables with ‘.ASSIGNC’ at any
time.

‘PVAR .REG (REGISTER)’
Use ‘.REG’ to define a variable that represents a register. In
particular, REGISTER is *not evaluated* as an expression. You may
use ‘.REG’ at will to redefine register variables.

All these directives accept the variable name in the "label"
position, that is at the left margin. You may specify a colon after
the variable name if you wish; the first example above could have
started ‘eg:’ with the same effect.

1.8 gasp.guide/Macros

Defining your own directives
============================

The commands ‘.MACRO’ and ‘.ENDM’ allow you to define macros that
generate assembly output. You can use these macros with a syntax
similar to built-in GASP or assembler directives. For example, this
definition specifies a macro ‘SUM’ that adds together a range of
consecutive registers:

.MACRO SUM FROM=0, TO=9
! \FROM \TO
mov r\FROM,r10

COUNT .ASSIGNA \FROM+1
.AWHILE \&COUNT LE \TO
add r\&COUNT,r10

COUNT .ASSIGNA \&COUNT+1
.AENDW
.ENDM

gasp 9 / 25

With that definition, ‘SUM 0,5’ generates this assembly output:

! 0 5
mov r0,r10
add r1,r10
add r2,r10
add r3,r10
add r4,r10
add r5,r10

‘.MACRO MACNAME’
‘.MACRO MACNAME MACARGS ...’

Begin the definition of a macro called MACNAME. If your macro
definition requires arguments, specify their names after the macro
name, separated by commas or spaces. You can supply a default
value for any macro argument by following the name with ‘=DEFLT’.
For example, these are all valid ‘.MACRO’ statements:

‘.MACRO COMM’
Begin the definition of a macro called ‘COMM’, which takes no
arguments.

‘.MACRO PLUS1 P, P1’
‘.MACRO PLUS1 P P1’

Either statement begins the definition of a macro called
‘PLUS1’, which takes two arguments; within the macro
definition, write ‘\P’ or ‘\P1’ to evaluate the arguments.

‘.MACRO RESERVE_STR P1=0 P2’
Begin the definition of a macro called ‘RESERVE_STR’, with two
arguments. The first argument has a default value, but not
the second. After the definition is complete, you can call
the macro either as ‘RESERVE_STR A,B’ (with ‘\P1’ evaluating
to A and ‘\P2’ evaluating to B), or as ‘RESERVE_STR ,B’ (with
‘\P1’ evaluating as the default, in this case ‘0’, and ‘\P2’
evaluating to B).

When you call a macro, you can specify the argument values either
by position, or by keyword. For example, ‘SUM 9,17’ is equivalent
to ‘SUM TO=17, FROM=9’. Macro arguments are preprocessor variables
similar to the variables you define with ‘.ASSIGNA’ or ‘.ASSIGNC’;
in particular, you can use them in conditionals or for loop
control. (The only difference is the prefix you write to evaluate
the variable: for a macro argument, write ‘\ARGNAME’, but for a
preprocessor variable, write ‘\&VARNAME’.)

‘NAME .MACRO’
‘NAME .MACRO (MACARGS ...)’

An alternative form of introducing a macro definition: specify the
macro name in the label position, and the arguments (if any)
between parentheses after the name. Defaulting rules and usage
work the same way as for the other macro definition syntax.

‘.ENDM’
Mark the end of a macro definition.

gasp 10 / 25

‘.EXITM’
Exit early from the current macro definition, ‘.AREPEAT’ loop, or
‘.AWHILE’ loop.

‘@’
GASP maintains a counter of how many macros it has executed in
this pseudo-variable; you can copy that number to your output with
‘@’, but *only within a macro definition*.

‘LOCAL NAME [, ...]’

*Warning: ‘LOCAL’ is only available if you select "alternate macro
syntax" with ‘-a’ or ‘--alternate’.* See

Alternate macro syntax
.

Generate a string replacement for each of the NAME arguments, and
replace any instances of NAME in each macro expansion. The
replacement string is unique in the assembly, and different for
each separate macro expansion. ‘LOCAL’ allows you to write macros
that define symbols, without fear of conflict between separate
macro expansions.

1.9 gasp.guide/Data

Data output
===========

In assembly code, you often need to specify working areas of memory;
depending on the application, you may want to initialize such memory or
not. GASP provides preprocessor directives to help you avoid
repetitive coding for both purposes.

You can use labels as usual to mark the data areas.

Initialized

Uninitialized

1.10 gasp.guide/Initialized

Initialized data

These are the GASP directives for initialized data, and the standard
GNU assembler directives they expand to:

‘.DATA EXPR, EXPR, ...’

gasp 11 / 25

‘.DATA.B EXPR, EXPR, ...’
‘.DATA.W EXPR, EXPR, ...’
‘.DATA.L EXPR, EXPR, ...’

Evaluate arithmetic expressions EXPR, and emit the corresponding
‘as’ directive (labelled with LAB). The unqualified ‘.DATA’ emits
‘.long’; ‘.DATA.B’ emits ‘.byte’; ‘.DATA.W’ emits ‘.short’; and
‘.DATA.L’ emits ‘.long’.

For example, ‘foo .DATA 1,2,3’ emits ‘foo: .long 1,2,3’.

‘.DATAB REPEAT, EXPR’
‘.DATAB.B REPEAT, EXPR’
‘.DATAB.W REPEAT, EXPR’
‘.DATAB.L REPEAT, EXPR’

Make ‘as’ emit REPEAT copies of the value of the expression EXPR
(using the ‘as’ directive ‘.fill’). ‘.DATAB.B’ repeats one-byte
values; ‘.DATAB.W’ repeats two-byte values; and ‘.DATAB.L’ repeats
four-byte values. ‘.DATAB’ without a suffix repeats four-byte
values, just like ‘.DATAB.L’.

REPEAT must be an absolute expression with a positive value.

‘.SDATA "STR" ...’
String data. Emits a concatenation of bytes, precisely as you
specify them (in particular, *nothing is added to mark the end* of
the string). See

String and numeric constants
, for details about

how to write strings. ‘.SDATA’ concatenates multiple arguments,
making it easy to switch between string representations. You can
use commas to separate the individual arguments for clarity, if you
choose.

‘.SDATAB REPEAT, "STR" ...’
Repeated string data. The first argument specifies how many
copies of the string to emit; the remaining arguments specify the
string, in the same way as the arguments to ‘.SDATA’.

‘.SDATAZ "STR" ...’
Zero-terminated string data. Just like ‘.SDATA’, except that
‘.SDATAZ’ writes a zero byte at the end of the string.

‘.SDATAC "STR" ...’
Count-prefixed string data. Just like ‘.SDATA’, except that GASP
precedes the string with a leading one-byte count. For example,
‘.SDATAC "HI"’ generates ‘.byte 2,72,73’. Since the count field
is only one byte, you can only use ‘.SDATAC’ for strings less than
256 bytes in length.

1.11 gasp.guide/Uninitialized

Uninitialized data

gasp 12 / 25

Use the ‘.RES’, ‘.SRES’, ‘.SRESC’, and ‘.SRESZ’ directives to
reserve memory and leave it uninitialized. GASP resolves these
directives to appropriate calls of the GNU ‘as’ ‘.space’ directive.

‘.RES COUNT’
‘.RES.B COUNT’
‘.RES.W COUNT’
‘.RES.L COUNT’

Reserve room for COUNT uninitialized elements of data. The suffix
specifies the size of each element: ‘.RES.B’ reserves COUNT bytes,
‘.RES.W’ reserves COUNT pairs of bytes, and ‘.RES.L’ reserves
COUNT quartets. ‘.RES’ without a suffix is equivalent to ‘.RES.L’.

‘.SRES COUNT’
‘.SRES.B COUNT’
‘.SRES.W COUNT’
‘.SRES.L COUNT’

‘.SRES’ is a synonym for ‘.RES’.

‘.SRESC COUNT’
‘.SRESC.B COUNT’
‘.SRESC.W COUNT’
‘.SRESC.L COUNT’

Like ‘.SRES’, but reserves space for ‘COUNT+1’ elements.

‘.SRESZ COUNT’
‘.SRESZ.B COUNT’
‘.SRESZ.W COUNT’
‘.SRESZ.L COUNT’

Like ‘.SRES’, but reserves space for ‘COUNT+1’ elements.

1.12 gasp.guide/Listings

Assembly listing control
========================

The GASP listing-control directives map straightforwardly to related
GNU ‘as’ directives.

‘.PRINT LIST’
‘.PRINT NOLIST’

Print control. This directive emits the GNU ‘as’ directive
‘.list’ or ‘.nolist’, according to its argument. See ‘.list’, for
details on how these directives interact.

‘.FORM LIN=LN’
‘.FORM COL=COLS’
‘.FORM LIN=LN COL=COLS’

Specify the page size for assembly listings: LN represents the
number of lines, and COLS the number of columns. You may specify
either page dimension independently, or both together. If you do
not specify the number of lines, GASP assumes 60 lines; if you do
not specify the number of columns, GASP assumes 132 columns. (Any

gasp 13 / 25

values you may have specified in previous instances of ‘.FORM’ do

not carry over as defaults.) Emits the ‘.psize’ assembler
directive.

‘.HEADING STRING’
Specify STRING as the title of your assembly listings. Emits
‘.title "STRING"’.

‘.PAGE’
Force a new page in assembly listings. Emits ‘.eject’.

1.13 gasp.guide/Other Commands

Miscellaneous commands
======================

‘.ALTERNATE’
Use the alternate macro syntax henceforth in the assembly. See

Alternate macro syntax
.

‘.ORG’
This command is recognized, but not yet implemented. GASP
generates an error message for programs that use ‘.ORG’.

‘.RADIX S’
GASP understands numbers in any of base two, eight, ten, or
sixteen. You can encode the base explicitly in any numeric
constant (see

String and numeric constants
). If you write numbers

without an explicit indication of the base, the most recent
‘.RADIX S’ command determines how they are interpreted. S is a
single letter, one of the following:

‘.RADIX B’
Base 2.

‘.RADIX Q’
Base 8.

‘.RADIX D’
Base 10. This is the original default radix.

‘.RADIX H’
Base 16.

You may specify the argument S in lower case (any of ‘bqdh’) with
the same effects.

‘.EXPORT NAME’
‘.GLOBAL NAME’

Declare NAME global (emits ‘.global NAME’). The two directives

gasp 14 / 25

are synonymous.

‘.PROGRAM’
No effect: GASP accepts this directive, and silently ignores it.

‘.END’
Mark end of each preprocessor file. GASP issues a warning if it
reaches end of file without seeing this command.

‘.INCLUDE "STR"’
Preprocess the file named by STR, as if its contents appeared
where the ‘.INCLUDE’ directive does. GASP imposes a maximum limit
of 30 stacked include files, as a sanity check.

‘.ALIGN SIZE’
Evaluate the absolute expression SIZE, and emit the assembly
instruction ‘.align SIZE’ using the result.

1.14 gasp.guide/Syntax Details

Details of the GASP syntax
==========================

Since GASP is meant to work with assembly code, its statement syntax
has no surprises for the assembly programmer.

Whitespace (blanks or tabs; *not* newline) is partially
significant, in that it delimits up to three fields in a line. The
amount of whitespace does not matter; you may line up fields in separate
lines if you wish, but GASP does not require that.

The *first field*, an optional "label", must be flush left in a line
(with no leading whitespace) if it appears at all. You may use a colon
after the label if you wish; GASP neither requires the colon nor
objects to it (but will not include it as part of the label name).

The *second field*, which must appear after some whitespace,
contains a GASP or assembly "directive".

Any *further fields* on a line are "arguments" to the directive; you
can separate them from one another using either commas or whitespace.

Markers

Constants

Symbols

Expressions

String Builtins

gasp 15 / 25

1.15 gasp.guide/Markers

Special syntactic markers

GASP recognizes a few special markers: to delimit comments, to
continue a statement on the next line, to separate symbols from other
characters, and to copy text to the output literally. (One other
special marker, ‘@’, works only within macro definitions; see

Defining your own directives
.)

The trailing part of any GASP source line may be a "comment". A
comment begins with the first unquoted comment character (‘!’ by
default), or an escaped or doubled comment character (‘\!’ or ‘!!’ by
default), and extends to the end of a line. You can specify what
comment character to use with the ‘-c’ option (see

Command Line Options
). The two kinds of comment markers lead to

slightly different treatment:

‘!’
A single, un-escaped comment character generates an assembly
comment in the GASP output. GASP evaluates any preprocessor
variables (macro arguments, or variables defined with ‘.ASSIGNA’ or
‘.ASSIGNC’) present. For example, a macro that begins like this

.MACRO SUM FROM=0, TO=9
! \FROM \TO

issues as the first line of output a comment that records the
values you used to call the macro.

‘\!’
‘!!’

Either an escaped comment character, or a double comment character,
marks a GASP source comment. GASP does not copy such comments to
the assembly output.

To *continue a statement* on the next line of the file, begin the
second line with the character ‘+’.

Occasionally you may want to prevent GASP from preprocessing some
particular bit of text. To *copy literally* from the GASP source to
its output, place ‘\(’ before the string to copy, and ‘)’ at the end.
For example, write ‘\(\!)’ if you need the characters ‘\!’ in your
assembly output.

To *separate a preprocessor variable* from text to appear
immediately after its value, write a single quote (‘’’). For example,
‘.SDATA "\P’1"’ writes a string built by concatenating the value of ‘P’

gasp 16 / 25

and the digit ‘1’. (You cannot achieve this by writing just ‘\P1’,
since ‘P1’ is itself a valid name for a preprocessor variable.)

1.16 gasp.guide/Constants

String and numeric constants

There are two ways of writing "string constants" in GASP: as literal
text, and by numeric byte value. Specify a string literal between
double quotes (‘"STR"’). Specify an individual numeric byte value as
an absolute expression between angle brackets (‘<EXPR>’. Directives
that output strings allow you to specify any number of either kind of
value, in whatever order is convenient, and concatenate the result.
(Alternate syntax mode introduces a number of alternative string
notations; see

Alternate macro syntax
.)

You can write "numeric constants" either in a specific base, or in
whatever base is currently selected (either 10, or selected by the most
recent ‘.RADIX’).

To write a number in a *specific base*, use the pattern ‘S’DDD’: a
base specifier character S, followed by a single quote followed by
digits DDD. The base specifier character matches those you can specify
with ‘.RADIX’: ‘B’ for base 2, ‘Q’ for base 8, ‘D’ for base 10, and ‘H’
for base 16. (You can write this character in lower case if you
prefer.)

1.17 gasp.guide/Symbols

Symbols

GASP recognizes symbol names that start with any alphabetic
character, ‘_’, or ‘$’, and continue with any of the same characters or
with digits. Label names follow the same rules.

1.18 gasp.guide/Expressions

Arithmetic expressions in GASP

There are two kinds of expressions, depending on their result:

gasp 17 / 25

"absolute" expressions, which resolve to a constant (that is, they do
not involve any values unknown to GASP), and "relocatable" expressions,
which must reduce to the form

ADDSYM+CONST-SUBSYM

where ADDSYM and SUBSYM are assembly symbols of unknown value, and
CONST is a constant.

Arithmetic for GASP expressions follows very similar rules to C. You
can use parentheses to change precedence; otherwise, arithmetic
primitives have decreasing precedence in the order of the following
list.

1. Single-argument ‘+’ (identity), ‘-’ (arithmetic opposite), or ‘~’
(bitwise negation). *The argument must be an absolute expression.*

2. ‘*’ (multiplication) and ‘/’ (division). *Both arguments must be
absolute expressions.*

3. ‘+’ (addition) and ‘-’ (subtraction). *At least one argument must
be absolute.*

4. ‘&’ (bitwise and). *Both arguments must be absolute.*

5. ‘|’ (bitwise or) and ‘~’ (bitwise exclusive or; ‘^’ in C). *Both
arguments must be absolute.*

1.19 gasp.guide/String Builtins

String primitives

You can use these primitives to manipulate strings (in the argument
field of GASP statements):

‘.LEN("STR")’
Calculate the length of string ‘"STR"’, as an absolute expression.
For example, ‘.RES.B .LEN("sample")’ reserves six bytes of memory.

‘.INSTR("STRING", "SEG", IX)’
Search for the first occurrence of SEG after position IX of
STRING. For example, ‘.INSTR("ABCDEFG", "CDE", 0)’ evaluates to
the absolute result ‘2’.

The result is ‘-1’ if SEG does not occur in STRING after position
IX.

‘.SUBSTR("STRING",START,LEN)’
The substring of STRING beginning at byte number START and
extending for LEN bytes.

gasp 18 / 25

1.20 gasp.guide/Alternate

Alternate macro syntax
======================

If you specify ‘-a’ or ‘--alternate’ on the GASP command line, the
preprocessor uses somewhat different syntax. This syntax is
reminiscent of the syntax of Phar Lap macro assembler, but it is *not*
meant to be a full emulation of Phar Lap or similar assemblers. In
particular, GASP does not support directives such as ‘DB’ and ‘IRP’,
even in alternate syntax mode.

In particular, ‘-a’ (or ‘--alternate’) elicits these differences:

Preprocessor directives
You can use GASP preprocessor directives without a leading ‘.’
dot. For example, you can write ‘SDATA’ with the same effect as
‘.SDATA’.

LOCAL
One additional directive, ‘LOCAL’, is available. See

Defining your own directives
, for an explanation of how to use

‘LOCAL’.

String delimiters
You can write strings delimited in these other ways besides
‘"STRING"’:

‘’STRING’’
You can delimit strings with single-quote charaters.

‘<STRING>’
You can delimit strings with matching angle brackets.

single-character string escape
To include any single character literally in a string (even if the
character would otherwise have some special meaning), you can
prefix the character with ‘!’ (an exclamation mark). For example,
you can write ‘<4.3 !> 5.4!!>’ to get the literal text ‘4.3 >
5.4!’.

Expression results as strings
You can write ‘%EXPR’ to evaluate the expression EXPR and use the
result as a string.

1.21 gasp.guide/Index

Index

gasp 19 / 25

+
Markers

--alternate
Invoking GASP

--commentchar ’CHAR’
Invoking GASP

--copysource
Invoking GASP

--debug
Invoking GASP

--help
Invoking GASP

--output OUTFILE
Invoking GASP

--print
Invoking GASP

--unreasonable
Invoking GASP

--version
Invoking GASP

-a
Invoking GASP

-c ’CHAR’
Invoking GASP

-d
Invoking GASP

-h
Invoking GASP

-o OUTFILE
Invoking GASP

-p
Invoking GASP

-s
Invoking GASP

-u
Invoking GASP

gasp 20 / 25

-v
Invoking GASP

.AELSE
Conditionals

.AENDI
Conditionals

.AENDR
Loops

.AENDW
Loops

.AENDW
Loops

.AIF Conditionals

.AIF EXPRA CMP EXPRB
Conditionals

.ALIGN SIZE
Other Commands

.ALTERNATE
Other Commands

.AREPEAT AEXP
Loops

.AWHILE EXPRA CMP EXPRB
Loops

.AWHILE STRA CMP STRB
Loops

.DATA EXPR, EXPR, ...
Initialized

.DATA.B EXPR, EXPR, ...
Initialized

.DATA.L EXPR, EXPR, ...
Initialized

.DATA.W EXPR, EXPR, ...
Initialized

.DATAB REPEAT, EXPR
Initialized

.DATAB.B REPEAT, EXPR
Initialized

.DATAB.L REPEAT, EXPR
Initialized

gasp 21 / 25

.DATAB.W REPEAT, EXPR
Initialized

.END
Other Commands

.ENDM
Macros

.EXITM
Macros

.EXPORT NAME
Other Commands

.FORM COL=COLS
Listings

.FORM LIN=LN
Listings

.FORM LIN=LN COL=COLS
Listings

.GLOBAL NAME
Other Commands

.HEADING STRING
Listings

.INCLUDE Other Commands

.INSTR(String Builtins

.LEN(String Builtins

.MACRO MACNAME
Macros

.MACRO MACNAME MACARGS ...
Macros

.ORG
Other Commands

.PAGE
Listings

.PRINT LIST
Listings

.PRINT NOLIST
Listings

.PROGRAM
Other Commands

.RADIX S
Other Commands

gasp 22 / 25

.RES COUNT
Uninitialized

.RES.B COUNT
Uninitialized

.RES.L COUNT
Uninitialized

.RES.W COUNT
Uninitialized

.SDATA Initialized

.SDATAB REPEAT, Initialized

.SDATAC Initialized

.SDATAZ Initialized

.SRES COUNT
Uninitialized

.SRES.B COUNT
Uninitialized

.SRES.L COUNT
Uninitialized

.SRES.W COUNT
Uninitialized

.SRESC COUNT
Uninitialized

.SRESC.B COUNT
Uninitialized

.SRESC.L COUNT
Uninitialized

.SRESC.W COUNT
Uninitialized

.SRESZ COUNT
Uninitialized

.SRESZ.B COUNT
Uninitialized

.SRESZ.L COUNT
Uninitialized

.SRESZ.W COUNT
Uninitialized

.SUBSTR(String Builtins

! default comment char
Invoking GASP

gasp 23 / 25

; as comment char
Invoking GASP

INFILE ...
Invoking GASP

NAME .MACRO
Macros

NAME .MACRO (MACARGS ...)
Macros

PVAR .ASSIGN EXPR
Variables

PVAR .ASSIGNA AEXPR
Variables

PVAR .ASSIGNC Variables

PVAR .EQU EXPR
Variables

PVAR .REG (REGISTER)
Variables

absolute expressions
Expressions

argument fields
Syntax Details

avoiding preprocessing
Markers

bang, as comment
Invoking GASP

breaking out of loops
Loops

comment character, changing
Invoking GASP

comments
Markers

continuation character
Markers

copying literally to output
Markers

directive field
Syntax Details

EQ
Conditionals

gasp 24 / 25

exclamation mark, as comment
Invoking GASP

fields of GASP source line
Syntax Details

GE
Conditionals

GT
Conditionals

label field
Syntax Details

LE
Conditionals

literal copy to output
Markers

LOCAL NAME [, ...]
Macros

loops, breaking out of
Loops

LT
Conditionals

macros, count executed
Macros

NE
Conditionals

number of macros executed
Macros

preprocessing, avoiding
Markers

relocatable expressions
Expressions

semicolon, as comment
Invoking GASP

shriek, as comment
Invoking GASP

symbol separator
Markers

symbols, separating from text
Markers

gasp 25 / 25

text, separating from symbols
Markers

whitespace
Syntax Details

\@
Macros

	gasp
	gasp.guide
	gasp.guide/Overview
	gasp.guide/Invoking GASP
	gasp.guide/Commands
	gasp.guide/Conditionals
	gasp.guide/Loops
	gasp.guide/Variables
	gasp.guide/Macros
	gasp.guide/Data
	gasp.guide/Initialized
	gasp.guide/Uninitialized
	gasp.guide/Listings
	gasp.guide/Other Commands
	gasp.guide/Syntax Details
	gasp.guide/Markers
	gasp.guide/Constants
	gasp.guide/Symbols
	gasp.guide/Expressions
	gasp.guide/String Builtins
	gasp.guide/Alternate
	gasp.guide/Index

